
THREAT/crawl: a Trainable, Highly-Reusable,
and Extensible Automated Method and Tool to

Crawl Criminal Underground Forums
Michele Campobasso
m.campobasso@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Luca Allodi
l.allodi@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Abstract—Collecting data on underground criminal commu-
nities is highly valuable both for security research and security
operations. Unfortunately these communities live within a con-
stellation of diverse online forums that are difficult to infiltrate,
may adopt crawling monitoring countermeasures, and require
the development of ad-hoc scrapers for each different commu-
nity, making the endeavour increasingly technically challenging,
and potentially expensive. To address this problem we propose
THREAT/crawl, a method and prototype tool for a highly
reusable crawler that can learn a wide range of (arbitrary) forum
structures, can remain under-the-radar during the crawling
activity and can be extended and configured at the user will.
We showcase THREAT/crawl capabilities and provide prime
evaluation of our prototype against a range of active, live,
underground communities.

Index Terms—cybercrime, crawler, underground forums,
reusable, stealth

I. INTRODUCTION

Underground cybercrime communities are increasingly
more important to understanding and measuring the over-
all threat landscape. Security operators or security service
providers scrape them to obtain key intelligence on emerging
threats [1]; law enforcement scrape (and sometimes run) them
to monitor cybercrime operations and networks [2]; security
researchers are interested, among other things, in understand-
ing the dynamics of attack innovation [3], [4], identify key
actors operating in these forums [5], or investigate novel
or emergent threats [6], [7]. The landscape of underground
criminal forums is large, with dozens of forums operating in
the English, Russian, and Chinese spheres – among many
others [3], [8], [9]; new communities appear continuously,
existent ones evolve, and the more prominent communities
deploy anti-crawling technologies to block scraping activities,
and ban (sometimes hard to obtain) related access creden-
tials [7], [8], [10]. This makes the endeavour of monitoring
cybercrime communities time consuming, technically chal-
lenging, and expensive to run. A large fraction of this overall
“cost” is constituted by the need to build ad-hoc crawlers
and parsers capable of correctly navigating different forums,
extract relevant content, while remaining under the radar [8].

In this paper we first derive from the literature and discuss
the overall “foundational” dimensions of this problem, and
identify the requirements for a general method over which we
design our prototype, THREAT/crawl. We showcase several
design choices that can effectively bridge the gap between the
dimensions of the problem, allowing to develop a tool that can
learn how to crawl a wide range of different forum structures
without requiring its users to re-write a parser for each differ-
ent forum (or, sometimes, forum section). THREAT/crawl
provides a simple interface for users to identify specific
elements of interest, such as navigation buttons and content,
and employs a set of strategies to automatically instrument the
crawling engine with the corresponding information needed to
traverse the HTML structure of the relevant page(s). Further,
THREAT/crawl can be extended by allowing users to in-
ject (JS) code during the training/crawling phase to perform
specific actions (e.g., to adapt the procedure to the specific
forum instance), and comes by design with extensive stealth
capabilities to remain under the radar during crawling, if
needed. To evaluate the effectiveness of our overall method and
of its prototype implementation, we showcase the implemented
features of the tool against a set of live, active underground
communities and discuss functionalities and limitations of our
implementation. THREAT/crawl will be released publicly
and freely upon publication of this paper.

The contribution of this paper is threefold:

• We analyze the foundational challenges posed by the
problem of designing a general, reusable crawler for
underground forums; the identified challenges can help
frame future contributions in this space;

• We propose a general method and solution to address
the identified challenges, and provide an implementation
showcasing the method and the architectural components
addressing each of the identified challenges;

• We evaluate our method and prototype tool against seven
live, active criminal underground forums and identify key
aspects for improvement of the tool implementation. We
release THREAT/crawl publicly to allow for any uptake
and employment of the tool from the community.

This paper proceeds as follows: in Section II we identify
key dimensions of the problem and derive requirements that
a general solution must satisfy; Section III discusses related
work and compares different solutions over the identified
requirements. Section IV details the overall design and imple-
mentation of our solution, and Section V evaluates it against
seven live underground communities. Section VI discusses
results and limitations of our solution, the next steps to take to
evolve THREAT/crawl to a mature solution, and Section VII
concludes the paper.

II. PROBLEM SPACE AND SOLUTION REQUIREMENTS

We identify two main dimensions to the problem of de-
signing a general, reusable crawler for underground forums:
the diversity of the forums, and the adversarial nature of the
monitored environment. A third dimension on ethical aspects
is transversal to these.

A. Adversarial environment for crawling

Crawlers can oftentimes be easily identified due to their
high content fetch rates from a target, and from their typical
approach to explore the available content of the target website.
These include consumer services such as Cloudflare DDoS
protection [11], [12] and other DDoS protection services,
provided from underground actors or by so-called Bulletproof-
Hosting services [13], [14], specialized in defending onion
websites. Browser fingerprinting is an effective strategy re-
quiring the request issuer to execute JavaScript to verify a
number of properties of the browser environment, which are
hard to mimic with the use of scripts. Other anti-crawler mea-
sures include HTTP requests inspection, which can provide
several indicators of bot activity (e.g., lack of proper “referer”
headers in HTTP requests). As a result of the detection, the
forum may slow down the crawling process [11], showing
CAPTCHAs [12] or throttling traffic, or may ban the forum ac-
count used to access the crawled resources [11]. The latter case
is particularly concerning in the case of communities enforcing
strict access control mechanisms at registration time (e.g.,
registration on invitation or paywall), potentially jeopardizing
months or years of efforts in creating a “legitimate” identity
in the underground to infiltrate [7]; similarly, this may pose
ethical issues when access fees have to be paid multiple times,
potentially compromising the balance between achieving re-
search goals and not providing tangible (economic) support to
criminals as a result of multiple payments. Hence, to deal with
anti-crawler countermeasures, a general tool has to be:

Stealth: it should avoid generating suspicious
traffic, while attempting to reproduce the fo-
rum navigation activity of a regular user.

(R1)

Depending on the community to monitor, researchers may
want to finely-tune the time at which pages are visited (e.g.
according to specific time-zones) and more in general the
crawling operation as a whole by gathering only relevant
information from specific sections. Therefore, a general tool
must also be:

Configurable: it should allow the user to finely
tune the crawler operation, including the speed
and time of the crawling and providing addi-
tional (run-time) information for its execution.

(R2)

B. Diverse underground communities

Albeit most forums are generally similar to each other,
implementations come with their own peculiarities that make
(automated) navigation not trivial [8], [11], [12], [15]–[18].
To scrape their pages, developing an ad-hoc crawler for each
target website is a costly and inefficient procedure, which has
to account for different aspects of the target [11], [16], [19].
Forums may be implemented using multiple CMSes [11], [15],
[19], with different versions, flavors and skins, or even be
completely custom solutions [8], [11], making the derivation
of a crawling algorithm addressing all the peculiarities for
each forum a challenging task. Also, several forums implement
anti-crawler mechanisms that randomize HTML attributes like
IDs or classes, making the position of content within a page
unpredictable. Hence, a general crawler tool should be:

Trainable: it should be capable of learning
how to crawl different forums, independently
of their structure, DOM properties, and design
and deployment solutions.

(R3)

Because of non-standard implementations that may appear
across different forums (e.g., customization of navigation fea-
tures such as JavaScript-enabled navigation buttons), a general
tool must also be:

Extensible: it should allow users to extend
the tool capabilities by injecting simple proce-
dures in the crawling process whenever a non-
standard situation not supported by the tool is
encountered.

(R4)

Apart from the challenge of crawling different forums, merely
downloading pages still poses the problem of content extrac-
tion [12], as it may be organized differently across different
forums. For example, each post in a thread generally con-
tains information regarding the author (e.g., registration date,
popularity, number of posts, ...), but their arrangement and/or
identification in the page may vary significantly, some may be
missing, and their position may not be constant across sections
of the same forum. This forces the implementation of custom
parsers for content extraction for each single forum to scrape
(and, occasionally, different parsers for pages in the same
forum) [11], [17]. This adds additional overhead to the data
collection process, increases time-consuming testing require-
ments, and generates parser software that cannot generally be
re-used. Therefore, a general tool should offer:

Structured data collection: it should provide
the capability to parse content from crawled
pages regardless of how these are structured.

(R5)

C. Ethical considerations

Usage of a crawler should always be subject to ethical con-
siderations. Given the sensible nature of the problem addressed

TABLE I: Mapping of tools and solutions from the literature
to the requirements of the problem space.

R1 R2 R3 R4 R5 MR1 MR2 Released?

[15] H# H# # H# # # # No
[19] # # H# # # # # No
[8] H# # No

[16] H# ? # # # # No
[22] H# ? # # H# # # No
[18] H# ? # # # # -
[10] # # H# # Yes
[17] # # # # H# H# # Yes†

[23] # # # # H# # # No
⋆ Yes‡

†: under commercial agreement; ‡: after publication.

in this paper (i.e., monitoring criminal forum communities),
we believe these concerns should be addressed at the design
level by the tool itself rather than being left entirely for
further consideration of the user. As such, requirements over
this dimension are to an extent ‘orthogonal’ to the other
requirements, and we therefore label them differently as meta-
requirements, MRx.

We identify two major concerns that must be addressed.
First, the monitoring of adversarial environments may require
the user to remain anonymous during (and oftentimes after [7])
the crawling activity, which in practice often results in tunnel-
ing the traffic over the TOR virtual network [7], [8], [10],
[17], [18]. Because of the limited bandwidth available to each
Onion Router (i.e. a hop in the TOR network), this may
compromise or altogether inhibit the experience of other TOR
users (which may be using it to communicate sensible data,
or avoid surveillance on their Internet activity). Therefore, a
general tool should satisfy the following meta-requirement:

Parsimonious: a tool should limit the band-
width usage over a private network. (MR1)

Secondly, some content on criminal forums and communities
in general may be offensive, or outright illegal even only to
access. It is therefore important that a general tool respects
the following meta-requirement:

Censoring: a tool should be able to censor
by not obtaining, download, and save, material
that is undesired by the user.

(MR2)

In addition, collecting data from underground markets and
using techniques to remain under the radar may violate the
terms of services of a target forum [8] and potentially disrupt
their activity [20]. Generally, the societal benefit of studying
cybercrime outweighs the remaining risks [18], [21], as also
evidenced by the numerous studies in this domain, but ulti-
mately this evaluation has to remain with the final user (and
relevant ERB).

III. RELATED WORK

Table I provides an overview of previous work on (or
employing) crawlers for underground forums, alongside some

open-source implementations available. Early studies collect-
ing data from live underground communities can be traced
back to the late 2000s [15], [24]; almost immediately, two
problems emerged: the development of complex crawling
infrastructures for that specific purpose, and the need to
implement strategies to circumvent the target’s (at that time,
rudimentary) anti-crawler measures [15]. The overhead of
creating non-reusable software for each target platform quickly
became an evident problem; Jiang et al. proposed a supervised
learning tool to teach the crawler how to predict the URL
structure of links in a forum [19] (R3). However, this solution
disregards the critical aspects of preserving stealth operations,
and there are no clear suggestions of data parsing capabilities.
Other studies on cybercriminal activities with the use of
crawlers to scrape content from underground communities
followed, but remained limited in the scope of the analysis
to one or few forums, using ad-hoc solutions (R4), and not or
only partially accounting for stealthiness [16], [17], [19], [22],
[23] (R1). Other studies rely on not-clearly defined crawling
infrastructures, and focus on the development of different
data extraction strategies [16], [23] or on the identification of
relevant products [17] and actors [22] using natural language
processing (R5). Campobasso et al. [10] developed a software
showcasing a supervised procedure to teach the crawler where
to find the needed elements to crawl, parse and save within the
pages of a target forum (R3, R5), while accounting for some
anti-crawler techniques and trying to remain stealth by mod-
elling human behavior [8], [10], [18] (R1). A more remarkable
example of a reusable software was proposed from Pastrana
et al. [8], providing support to new modules (R4) to enable
crawling and data extraction (R5). They developed a crawler
accounting several aspects to conduct stealth operations such
as human behavior modelling (R1), similarly to [10], including
also the possibility to enable or disable specific behaviors
(R2). However, the software does not offer a guided procedure
to the creation of new modules. In the panorama of open-
source commercial solutions, we mention some of the most
famous general purpose crawlers, such as scrapy [25], Apache
Nutch [26], and Heritrix [27], albeit none of them is designed
to stealthily crawl underground communities. Some of these
solutions aim at rapidly extract content from pages [25], [26]
(sometimes at the cost of stumble into rate limiting or ban
from the target [28]) or can be used for archival purposes [27],
they offer their users a great degree of flexibility [25] while
requiring to code the business logic of the crawler (including
any anti-detection strategy), and necessitate of additional li-
braries to support browser capabilities, like session handling
or JavaScript execution [25]–[27].

IV. OVERALL METHOD AND SOLUTION DESIGN

We name our method and tool THREAT/crawl. Table V
in the Appendix provides an overview of issues associated
with each (meta) requirement, and the corresponding strategy
employed by THREAT/crawl. The overall THREAT/crawl
design is described in the following.

TABLE II: Requirements to arch. components mapping.

R1 R2 R3 R4 R5

A1 Training module ✓ ✓ ✓ ✓
A2 Javascript injection module ✓
A3 Scheduler ✓ ✓
A4 Crawling module ✓ ✓ ✓
A5 Privacy pass module ✓ ✓

A. Solution architecture

The different architectural components are mapped to one
or more requirements; the mapping is summarized in Table II.

a) A1. Training module: The training process is summa-
rized in the process diagram in Figure 1.

Bootstrap. Before crawling a new community for the first
time, it is necessary for THREAT/crawl to learn how to
navigate it. To achieve this, the user starts THREAT/crawl
and defines a new configuration, then starts the training. In
the configuration interface, the user provides a list of exam-
ple URLs (login, home page, section, optionally subsection,
and thread pages) on which the training will be executed
(Figure 2). In addition, the configuration interface allows to
select the desired timezone and variance ranges for the time
to start and end of both crawling and breaks. During the
configuration it is also possible to specify the policy of content
exploration, which can filter out content when matching a
list of blacklisted keywords (e.g., avoid exploring threads),
or exploring only content containing specific keywords of
interest. THREAT/crawl provides an interface to define the
blacklisted keywords to filter from the crawling or those of
interest (MR2, Figure 5, in Appendix), and the execution
schedule (Figure 6, in Appendix).
THREAT/crawl allows to modify a configuration or a

training after these have been defined. The identification of
representative example pages is not necessarily an easy task,
and changing one of the selected URLs to train again for that
page type while preserving the other correct trained pages
should be a possible alternative. This is desirable in the
case of a minor update in the forum structure breaking the
crawling procedure, or when finer tuning is necessary. For
this reason, THREAT/crawl offers the possibility to select
a previous configuration and untick the “skip training” in the
configuration interface; starting will result in a new training
session pre-labeling the previously identified elements. When
started, the tool prepares a queue with the URLs provided
during the configuration and starts TOR Browser. The tool
asks the user if the target website needs Cloudflare tickets to
avoid encountering their DDoS protection page. This will be
detailed in the discussion of A5. The training module can now
proceed to load the first page in the queue.

Training interface interaction. When the page is ready in the
browser, it is saved and checked for CAPTCHAs. If any, the
user is notified via the CLI, asking to solve it. The page is
then rendered in the training interface, as shown in Figure 3.
The login page is then saved and, if no CAPTCHA was

encountered, rendered in the training interface, as shown in
Figure 3. Before the labeling, the user has the possibility
to execute JavaScript in the page to interact with it, for
example to show content of interest otherwise hidden (ref.
A2, Figure 7, in Appendix). The training interface allows the
user to specify the type of the current page (login, homepage,
section, optionally subsection, and thread), which is used to
learn the target structure. After indicating the correct page
type, THREAT/crawl will show the specific labels relevant
for that page. By clicking on a label, it is possible to apply it to
the relevant element(s).1 Once the user identified each relevant
element in displayed page, they can confirm the selection.
Identifiers computation. The identified elements are processed
to produce XPaths identifiers. XPaths are calculated using
four strategies, each working as fallback to the previous one.
Each element’s XPath is independently calculated with the first
strategy yielding a correct result; the four strategies are:

• The first strategy is an implementation of the algorithm
proposed by Leotta et al. [29], that prioritizes a set of
attributes stably identifying HTML elements (e.g., id,
name, class, ...), avoiding those who do the opposite
(e.g. src, href, height, ...). However, in the context
of anti-crawler measures, IDs and names may be random-
ized, resulting in an apparently valid training that is no
longer effective in a new session or on page reload. Also,
this strategy can only calculates the identifier for a single
element, while in many cases we may need to have an
identifier matching several elements.

• The second strategy accounts for these limitations and
tries to calculate XPaths by constructing the absolute
XPath (i.e., fully characterizing all the descending se-
lectors starting from the root element /html). If two or
more elements are provided, the strategy calculates the
absolute XPaths for all of them and derives the common
XPath matching them all.

• The third strategy attempts to extract an element’s class
attribute in the case of randomized identifiers and full
XPath changing (e.g., the number of navigation buttons
changing per thread depending on their number of pages).
While this can be also performed from the first strategy, it
is not capable of deriving the common classes for differ-
ent elements. This method therefore attempts to calculate
the common class attribute of different elements.

• The fourth strategy tries to calculate the XPath using
Selenium; for the obtained identifiers from the training,
Selenium finds the related WebElement object and
extracts their XPaths. In the case of multiple elements,
this strategy uses the second strategy’s approach to derive
a common XPath.

As a last resort, in case all the four strategies fail to deliver
an XPath, THREAT/crawl will ask to provide an XPath
identifying the problematic element(s) in the displayed page.
This requires the user to manually calculate a stable XPath.

1To keep the training procedure as flexible as possible, THREAT/crawl
does not mandate the training of any specific element(R4).

A2

TRAINING PROCESS

C
od

e
Bootstrap

A5

Define page
queue

Start Tor
Browser

Necessary
Cloudflare

tickets?

Load first
page queueNo

Training interface interaction

Page ready Save page

Render train
interface

Execute
JavaScript

No

CAPTCHA
in page?

Identifiers computation

Compute IDi
with S1

No

Has
result?

Compute IDi
with S2

Has
result?

No

Compute IDi
with S3

Has
result?

No

Compute IDi
with S4

Has
result?

No
XPath

injection

Verification

Render page

Are the
identifiers
correct?

Yes

Reload to
verify stability

Yes

Yes End

Same
elements?

Pop page
from queueNoPage queue

empty?

No

No

Yes
Has

"next page"?
(once)

Click "next
page"

Save IDs
(+JS) in DB

Yes

No

U
se

r

Define
configuration

Start Provide
tickets

NoPage needs
interaction?

Write
JavaScript Yes Label and

submit

Solve
CAPTCHA

Write XPath

Yes

Yes

Yes

Yes

Fig. 1: Trainer execution process diagram.

When creating a new configuration, in the configuration interface the
user can provide the list of example URLs that will be used during
the training, credentials, timezone to which the schedule will apply,
keywords policy (i.e., open only threads containing specific keywords
or all), and the start and end variances for both crawler session and
breaks in minutes.

Fig. 2: Configuration interface of THREAT/crawl.

Verification. Once all the submitted elements yielded an XPath,
a new confirmation window will render again the page, color-
coding each relevant element for visual verification. The user
can verify if the training was correct; if one of the XPath
calculation strategies yielded a wrong result it is possible
to adjust the learned structure, by correcting the wrongly
labeled elements. This will cause the next strategy to run and
calculate new XPaths. In the case of XPaths matching more
elements than desired (e.g., only specific sections identified
by their tr element, rather than all tr elements inside of a
table), THREAT/crawl offers the possibility to (de)select
all elements that should not be included in the current selec-
tion. Once the page is correctly labeled, the training for the
current page is considered complete; the page is then reloaded
and THREAT/crawl checks if the calculated identifiers are
stable. If not, a prompt will ask if the user can still see the
element that THREAT/crawl could not find. If this is the
case, THREAT/crawl considers the element identifiers in
the page as unstable (i.e., likely randomized) and the training
continues until a strategy provides stable identifiers. When the
identifiers are deemed stable, it is possible to move to the next
page in the queue. For pages containing navigation items (i.e.,
next or previous page buttons) THREAT/crawl will load also
the next page by clicking the next page button, to verify that
the right strategy was used and the training was successful;
these elements are particularly sensitive as their position and
number varies when moving to the next page. When one
page contains multiple elements of the same category (e.g.,
thread titles), it is possible to click multiple of them; in this
case, the training module employs the first strategy capturing
the XPath matching all the identified elements. Finally, for
elements containing dates (e.g., post date), it is possible to
specify a date format for parsing. Once the training for all
pages is terminated, the procedure is completed.

A B

1

2

3

4

5

To the left, there is the rendered page A , and to the right there is the training pane B . From the latter the user first has to specify what type of page
is being trained 1 (in this case, login page). The user selects “add” 2 and clicks on the label to assign (in this case, “Username”) 3 in the training
pane B . In the rendered page A it is now possible to click on the corresponding input field 4 . This will color the input field with the same color of
the selected label. In the case the user misclicks the box, they can click on “remove” next to “add” to remove the wrong selection and try again. When
the user labeled all the relevant elements, they can confirm by clicking on “Train structure” 5 .

Fig. 3: Training window for a login page.

b) A2. JavaScript injection module: Some underground
platforms are particularly difficult to crawl, as they dynam-
ically load content in the page upon interaction without
affecting the URL, making the desired content unreachable
at that stage. In the training page, THREAT/crawl offers
the possibility to inject and execute JavaScript in the loaded
page via the execute_script function of tbselenium [30],
a browser instrumentation library extending the popular
browser instrumentation library Selenium [31] to support TOR
Browser. After the script execution, THREAT/crawl pro-
ceeds to render the updated page again in the training interface.
Upon confirmation of the training, the JavaScript code is
saved in the database. Every time a page of the same type
is loaded during the crawling, THREAT/crawl will execute
the script before interacting with it. Among other use cases,
the JavaScript injection module allows to remove elements
hindering the interaction with the page (e.g., closing a popup)
or to show the list of sections of interest. The module offers
a button that pre-generates the needed code to click on an
element, and the user needs only to identify its XPath and
replace it in the code (Figure 7). More advanced cases include
accessing to ‘private’ forum sections, where a page requiring
an additional password may be displayed, or showing hidden
post content after multiple interactions with it.

c) A3. Scheduler: During the setup of THREAT/crawl
it is possible to define a schedule for the crawler. The scheduler
allows to specify when the crawler should start and end
its execution over each weekday, and to schedule pauses in
between a crawling session. Also, it is possible to specify
how strictly the schedule must be followed, by defining ranges
that alter the start and end time of both crawler activity and

pauses, and the timezone to which the schedule applies. When
the crawler is allowed to start, the scheduler compiles a list
of time spans for the crawler to run or pause.

d) A4. Crawling module: The crawling process is sum-
marized in the process diagram in Figure 4. The crawler uses
an instrumented instance of TOR Browser [32], maneuvered
via tbselenium. We decided to use TOR Browser to improve
the anonymity of THREAT/crawl, while granting access to
underground communities available over TOR. Selenium uses
geckodriver to hook to TOR Browser’s APIs; however, it
discloses that the current browser is controlled by automation
by setting a read-only variable navigator.webdriver
to true. To avoid this, we create a profile for TOR Browser
coming with the extension TamperMonkey, which allows to
create and execute scripts during the lifecycle of a webpage.

Bootstrap. The crawler can start in two different ways: it can
begin after completing a training procedure for a new forum, or
from a pre-existing configuration of interest for which training
already happened. In both cases, the GUI spawns the crawler
process by passing the relevant configuration. The scheduler
calculates when the crawler should start and end the activity,
and schedules both the breaks defined during the configuration
and a number of random interrupts. When it is time to start, it
creates a queue of pages to visit (namely, the login page and
the home page only) and starts TOR Browser. Similarly to
A1, it asks the user if Cloudflare tickets are necessary. Then,
it loads the first page in queue.

Page preparation. When the (login) page is ready, the crawler
saves it and checks for the presence of CAPTCHAs; if present,
the user will be prompted to solve it. Then, the module checks
if for that page there is some JavaScript to execute. If so, the

CRAWLING PROCESS
C

od
e

Bootstrap

A3

A5

Define page
queue

Start Tor
Browser

Necessary
Cloudflare

tickets?

Load first
page queueNo

Set interrupts
and schedule

No

YesStart
time?

Wait until time
to start

Page preparation

A2

Page ready

Save page

Yes

Execute
JavaScript

Yes

NoCAPTCHA
in page?

Notify the
user

JS to
execute?

Click on
element

Page identification, parsing and interaction

No

YesLogin?

YesHome?

No

Sec?

No

Subsec?

No

Thread page

Perform login Pop page
from queue

Yes

No

Next
sec?

Identify next

Yes
Unwanted
content?

Yes

Yes

Next
thread? No

Next
subsec?

End

No NoNext
page? Close page

Yes

NoYes NoNext
page?

Yes

Save on DB Next page?

Wait random
delay

Wait delay
∝ content

Yes

NoUnwanted
content?

Next
thread?

No

No

U
se

r

Select
configuration

Start crawler
process

Provide
tickets

Yes

Yes

Solve
CAPTCHA

Yes

No
Yes

Fig. 4: Crawler execution process diagram.

page is saved again and it is ready to be parsed.

Page identification, parsing and interaction. In the case of
a login page, login is executed and the next page loaded
is the home page. When moving across pages that are not
thread pages, THREAT/crawl waits a random number of
seconds between 5 and 15. For each section (and optionally
subsection, if specified), THREAT/crawl checks if there are
threads yet to crawl. If so, each thread of interest (that is,
not containing blacklisted keywords in the title) is opened
in random order, one at a time, and traversed to extract its
content, which is sent to the database. Before moving to the
next page of a thread, THREAT/crawl calculates a waiting
time based on the WPM (words-per-minute) speed defined
in the configuration and on the length of the text content of
the current page. When the thread crawling is completed, the
crawler returns to the parent section (or subsection) and looks
for a new thread to crawl. If all threads in the page have
been crawled, the crawler will attempt to reach the next page
of the current (sub)section. When completed, it moves to the
next one, if any. The crawler can suspend its execution for the
scheduled pauses (randomly) planned during the definition of
the schedule. When all sections have been fully crawled, the
crawler will terminate its execution.

e) A5. Privacy Pass ticket injection module: An increas-
ing amount of underground communities are adopting Cloud-
flare DDoS protection to mitigate attacks to their infrastruc-
ture. Lately, Cloudflare CAPTCHAs have become particularly
obtrusive when trying to access a protected website via TOR,

due to the low reputation assigned to IPs of TOR’s exit-
nodes’. This causes the presence of very long sequences of
CAPTCHAs. In 2018, a group of researchers developed a
security-enhancing protocol and an extension in cooperation
with Cloudflare that allows users to solve CAPTCHAs in ex-
change of so-called ‘tickets’ that can be used to bypass Cloud-
flare’s CAPTCHAs [33]. THREAT/crawl comes with a TOR
Browser profile with the Privacy Pass extension installed, that
allows to legitimately earn tickets from Cloudflare’s website
captcha.website, and to store them in the extension. The
only caveat is that earning tickets is not possible via TOR
Browser because captcha.website is protected from the
same DDoS protection mechanism, requiring to browse the
website from the clear web. The user can provide the obtained
tickets to THREAT/crawl via the dedicated interface.2

V. THREAT/CRAWL EVALUATION AGAINST LIVE, ACTIVE
UNDERGROUND FORUMS

We tested THREAT/crawl against seven live, active crim-
inal underground forums to which we have access. In this
Section, we start by providing an overview of these forums
and the overall capability of THREAT/crawl to adapt to the
different environments to crawl. We then discuss in detail the
capabilities of the tool’s architectural components in relation to

2Privacy Pass functionality is suspended by Cloudflare when Cloudflare
customers declare an ongoing attack (“I’m under attack!” mode); this provides
various mitigation techniques to DDoS attacks, among which disabling the
Privacy Pass protocol [34]. This causes the extension not to be effective and
the interstitial CAPTCHA page to be displayed.

the most interesting challenges posed by the selected forums.
Finally, we provide an overall description of the performance
of THREAT/crawl across the forums. The present evaluation
serves two purposes: (1) to evaluate the effectiveness and
performance of the proposed core functionalities of the tool;
(2) to identify weaknesses and points of improvement for
future iterations of the tool, as some edge-cases not considered
at design/implementation time may not be fully supported
yet. This data collection was performed under ERB approval
ERB2021MCS1.

A. Selected underground forums

Table III provides an overview of the selected forums
for the evaluation. All forums have been active for at least
four years, with the oldest recorded activity in Jan 2015
for nulledbb. Almost all are organized in sections and
subsections, although numbers vary widely across forums as
do the number of posts. Selected forums are also well varied
in terms of number of posts and cover English and Russian
locales. nulled and altenen employ a CAPTCHA system
at login time. Below we discuss the forums’ relation to the
problem space defined in Section II. crdclub provides a
baseline for the performance evaluation. This forum does not
come with any specific anti-crawler measure and its structure
is rather straightforward. However, it features two inconvenient
aspects: it shows a popup when a direct message is received,
altering the interaction with the page, and it opens the last
page of thread if we click on its title. The former problem
is solved by disabling this option in the user control panel
of the website, while the latter, shared with nulledbb, is
tackled with a specific solution implemented in A1. nulled
represents the benchmark to test both A2 and A5 capabilities;
respectively, marketplace sections can be dynamically loaded
after clicking on a button in the homepage, and the website
is protected by Cloudflare DDoS protection. xss implements
ID randomization in the DOM and some elements such as
thread title in the subsections and post author details do not
come in predictable positions all the times, which is interesting
from A1 perspective. altenen is a forum requiring to interact
multiple times in a thread to show the hidden content (A2),
causing threads to be long and rich in spam, offering inter-
esting considerations during the execution of A1. nulledbb
presents an interesting marketplace section, and we configured
THREAT/crawl to target content presenting malware related
terminology. Finally, darknetcity is a forum hosted on
TOR, and comes with a non-trivial layout for the user details
in a post. In addition, altenen and darknetcity present
significant performance issues due to the large amount of high-
definition GIFs, worsened by TOR’s bandwidth; we present a
solution to mitigate this issue. We also discuss the problems
encountered during the training (nulledbb) and the crawling
(deeptor, nulledbb and nulled).

B. Overall performance

We test THREAT/crawl functionalities by performing
training and crawling, for a session of four hours, for all

forums. Rather than completing the data collection, our goal
here for the presented prototype is to test whether the core
functionalities of THREAT/crawl work across all forums and
are sufficient, to identify those who need further refinement
and to discuss about the possible alternatives, while providing
an estimate figure of the volume of crawled pages in a unit of
time. To provide a range of estimations for different use cases,
we customize configurations for each forum depending on the
expected quantity of content, long delays from the platform,
and desired stealth. Table IV details the chosen configurations
and summarizes THREAT/crawl performance. The relatively
low number of threads and posts visited for crdclub and
xss compared to altenen and darknetcity can be
traced back to the verbosity of their posts. Often, members
quote the original post of the author, increasing the delay
before moving to the next page. Considering that a regular user
would notice the repeated content, an higher WPM range could
be defined, as we did for darknetcity. Both altenen and
darknetcity suffered from a premature termination of the
crawling session due to connectivity issues with the websites.
However, the results were interesting; both performed well,
collecting 1′691 and 1′451 posts across 94 and 6 threads
respectively in approximately three hours and a half. As men-
tioned, both forums feature a large amount of high-definition
GIFs, making the complete loading of the page extremely long
and causing timeouts. In the configuration, THREAT/crawl
allows to disregard loading images and, albeit representing
a possible suspicious behavior, the solution proved effective.
altenen’s training had a visual glitch, where clicking on
the “next page” button would highlight it temporarily, but the
training was not negatively affected. For this forum we also
created some JavaScript to show hidden content in the threads
by liking and replying to the original post. Finally, we could
not perform an adequate crawling session on nulled. Despite
the presence of valid Cloudflare tickets, the forum set the
“I’m under attack!” mode, disabling the functionalities of the
extension [34] and making crawling impossible for more than
a few minutes. The training for nulledbb was complicated
due to an improper rendering of the identified elements, mak-
ing the adjustment process tedious until the problematic label
was identified, a stable identifier was manually created and
provided via the fifth strategy. Whereas deeptor successfully
completed the training session, its structure seemed to change
during crawling, thus making the tool incapable of accessing
previously visited threads.

Overall, THREAT/crawl was successfully trained for all
the forums, with some imperfections for two of them, and
managed to crawl four of the seven live forums employed for
the evaluation. A fifth one, nulled could be theoretically
crawled, but the defences in place at the moment of the
benchmark blocked TOR IP addresses, obstructing our opera-
tions. The problems encountered in the two remaining forums
will be discussed in relation to the appropriate architectural
component in Section V-C.

TABLE III: Descriptive statistics for the seven selected underground forums.

Focus Language(s) CAPTCHAs? Sec Subsec Threads Posts First activity

crdclub Carding, documents, fraud EN, RU No 4 47 86′537 395′276 Jul 8, 2016†

nulled Leaks, accounts, fraud EN Yes 48 45 1′203′886 35′177′498 Apr 22, 2015†

xss Malware, spam RU No 48 3 50′610 394′486 Sep 19, 2018‡

altenen Ewhoring, malware, accounts EN Yes 55 68 970′023 6′840′943 Mar 22, 2010†

nulledbb Accounts, hosting, Ewhoring EN No 23 61 ∼ 206K ∼ 1.5M Jan 01, 2015†

deeptor Carding, fraud EN No 31 8 14′132 98′631 Jul 24, 2015 †

darknetcity Accounts, proxy, fraud EN No 53 0 3′089 15′018 Oct 26, 2017†

Information fetched on June 18th, 2022. †: oldest staff registration date. ‡: domain registration date.

TABLE IV: Summary of THREAT/crawl performances across the selected forums.

Train Crawl Timetotal Timebreaks WPM Download img JS exec CF tickets Threads Posts

crdclub ✓ ✓ 4:05:52 40:45 180− 240 ✓ ✗ ✗ 1 330
nulled ✓ ✗ - - 180− 240 ✓ ✓ ✓ - -
xss ✓ ✓ 3:51:40 42:46 180− 240 ✓ ✗ ✗ 1 580
altenen ✓ ✓† 3:31:12 28:29 180− 240 ✗ ✓ ✗ 94 1′691
nulledbb ∼ ✓ ✗ 1:04:54 00:00 180− 240 ✓ ✗ ✗ 4 13
deeptor ∼ ✓ ✗‡ 08:12‡ 00:00 180− 240 ✓ ✗ ✗ 1 10
darknetcity ✓ ✓† 3:31:29 44:15 600− 800 ✗ ✗ ✗ 6 1′451
†: premature termination due to connectivity issues with the target; ‡: manual termination of the tool due to wrong behavior during crawling.
All the parameters specifying the page loading and download duration timeouts, the timezone adopted, the variance intervals to apply when calculating
the start and end of workday and breaks, as well as interruption duration and minimum time between two interruptions are set to default.

C. Technical rundown

In this Section we provide an insight of the involved
processes from the tool’s perspective, and detailing the most
interesting cases.

1) A1 Training: The underground forum xss implements
randomized IDs for several elements across its pages as a
anti-crawler countermeasure. In the login page, the username
and password fields have id=_xfUid-1-timestamp,
where timestamp is expressed in seconds from
epoch. In this case, these elements also present a stable
attribute autocomplete, which is identified from
the first strategy and used as a reliable identifier. In
the home page, the user proceeds to label the sections
and subsections of interest. In this case, we are only
interested in the subsections “Malware” (XPath:
/html/.../div[5]/.../h3[1]/a[1] and “Crack-
ing” (XPath: /html/.../div[6]/.../h3[1]/a[1]
under the section “Underground”. When two or more elements
of the same type are defined, THREAT/crawl attempts to
infer a common XPath that matches all the selected elements
of that type using the second strategy. This is beneficial
from a user perspective, as it allows to identify only a few
examples to infer the identifier, instead of clicking them
all (e.g., the list of all threads in a page). However, in that
case we are interested in only that specific set of elements;
it is possible to click on the button “Ignore” and select the
elements to blacklist (i.e., the uninteresting subsections).
The strategy in charge (strategy two) obtains the correct
XPath (XPath: /html/.../div/.../h3[1]/a[1]
while keeping a list of the ignored XPaths, and thus
telling THREAT/crawl to access only those matching
the XPath that are not blacklisted. In subsections,

threads can be generally identified by using the XPath
/html/.../div[thread_id]/div[2]/div[1]/a[1].
However, sometimes they present a tag before their name, re-
sulting in tagged threads being identified by the XPath selector
/html/.../div[thread_id]/div[2]/div[1]/a[2].
Selecting both types of threads would generate the common
XPath /html/.../div/div[2]/div[1]/a with
strategy two (note that the div in bold matches all the
thread ids), which matches both the thread links and
tag links. Once we acknowledge that every subsequent
strategy fails to identify the list of threads correctly, we
are prompted to provide an XPath that we can calculate
by inspecting the page (R4). From manual inspection it
is possible to note that thread titles consistently present
the attribute data-xf-init="preview-tooltip".
It is possible to use this attribute to generate the XPath
//*[@data-xf-init="preview-tooltip"] and to
provide it to the trainer, thus solving the problem.

The training of nulledbb resulted challenging in the
thread page. One or more wrong identifiers matched wide
areas of the page; for example, the post date identifier was
wrong and resulted in a verification window without any
labeled element. This made the training complicated, as it
was not possible to correct the labeling for the single wrong
identifier, leading the tool to use new strategies even for
the correct identifiers. After some attempts, it became clear
that also the identifiers for the post content were creating
problems during the rendering of the identified elements. After
reiterating the training for a few times, THREAT/crawl
asked to provide the XPaths for the problematic elements.
From manual inspection of the page, we identified the
attribute data-original-title=’Original post

time’ for the post date, and class=’post-message
flex-fill for the post content, and we created the
corresponding stable identifiers.

2) A2 JavaScript injection module: altenen allows
to see the content of a post after the user “likes” the
post and replies to it as an anti-crawler measure. To solve
this problem, during the training of a thread page, the
user can write a script to perform these actions. The like,
quote, and send reply buttons come in predictable places,
//post_footer/div[1]/div/a[1]/span/bdi,
//p_footer/div/div/a[2], and
//form/../button[1]/span respectively. The user
needs to prefill the JavaScript injection box with the “click
on element” code (ref. Figure 7) and to provide the relevant
XPaths. Considering the time required to submit the like,
quoting the post and sending the reply, it is necessary to
introduce some waiting time between actions, by using
the await new Promise(r => setTimeout(r,
millis)) function. Once ready, the script is executed in
the page in TOR Browser via tbselenium, and the page is
downloaded and rendered again. Upon confirmation of the
training, the JavaScript code is saved in the database.
nulled organizes the content in several sections accessible

from the home page by clicking to the “topic” of interest,
which shows the relevant sections. This content cannot be
accessed directly from a URL, but rather requires the user to
click on the topic of interest. Similarly as seen in altenen
to click on the “Leaks” topic button, it is sufficient to prefill
the JavaScript injection box and provide the button’s XPath.

3) A3 Scheduler: The scheduler execution does not have
noteworthy details to report for the evaluation set.

4) A4 Crawler: altenen contains unwanted material,
such as so-called revenge pornography material. We set the
crawler to explore all links but to avoid threads containing the
keywords “GF”, “nudes”, “photos”, “snapchat” and “naked”
in any of their posts or in the title (Figure 5). To achieve that,
the crawler parses the current page (i.e., a section), seeking for
threads to explore. From the threads list, it checks if any of
these should be excluded based on the blacklisted keywords.
The same process applies while browsing a thread: if any of
the posts mentions any of the keywords, the thread is closed,
the posts discarded, and the tool moves to the next thread.
Similarly, nulledbb features potentially interesting content
among a large amount of spam, and we set the crawler to
explore only threads matching one or more relevant keywords
related to malware trade. However, crawling for nulledbb
failed due to Selenium being unable to detect if the browsed
page was successfully loaded or not. This resulted in a page
not successfully loaded and Selenium not raising a timeout
error to let THREAT/crawl reload the page and try again,
ultimately stalling the crawler.
deeptor crawling failed in the section page. The problem

is that the position in page for thread titles mutates when a
thread is accessed for the first time; when THREAT/crawl
returns to the section page after crawling the first thread, it
fails to identify all the threads in the page, resulting in an

error and prematurely terminating the crawling of the current
section. A solution could be to manually inspect the structure
of the page to derive XPaths matching both cases. XPath
syntax includes an UNION operator, which could be used to
derive the list of threads for both cases. Therefore, running
again the training and voluntarily falling back to the XPath
injection strategy (ignoring the currently correct training not
accounting for the future DOM of the page) is a possible
workaround. nulledbb crawling stalled when a page failed
to load; this is not an uncommon issue within the crawling
context, especially when using TOR, and THREAT/crawl
manages this issue by interpreting the errors arising from
Selenium. However, during this run we encountered a case
in which Selenium “hangs” indefinitely, and our tool manages
the situation as a network issue, and attempts to refresh the
page. Despite that, Selenium remains unresponsive, and our
tool cannot proceed in the crawling. This issue would require
to inspect Selenium and to extend its functionalities.

5) A5 Privacy Pass ticket injection module: To both train
and crawl nulled, we need to prevent Cloudflare to show the
CAPTCHA page. To do so, the user has first to earn tickets on
captcha.website in the case of Cloudflare and then to ex-
port them. The user needs to access to the Firefox debug mode
(about:debugging#/runtime/this-firefox) and
click on inspect for Privacy Pass. By browsing the ‘Storage’
tab, under ‘Local Storage’ they can find the tickets in the
form of two key-value pairs (cf-commitment-2.58 and
cf-tokens) to copy and paste into THREAT/crawl’s
dialog, (Figure 8). After submitting all the key-value pairs,
THREAT/crawl will trigger a sequence of actions via Se-
lenium, opening the same page and executing JavaScript in
the browser console, thus loading the tickets in the extension.
Once this operation is completed, the browser will success-
fully load the target website, bypassing the CAPTCHA. This
procedure allowed us to perform the training of nulled;
however when we tried to crawl some days later, the forum set
the “I’m under attack!” mode and stopped accepting tickets
(considering the timing of the episode, and the negligible
volume of traffic generated by our training we consider it
unlikely that our training session caused the state change).
A possible solution for a future release of THREAT/crawl
would be to allow the option of using either TOR Browser or
Firefox for the execution of THREAT/crawl with a dedicated
proxy, thus avoiding to use the IP addresses of TOR exit-nodes
which generally suffer of bad reputation.

D. User interface

1) A1. Training module: In the (Bootstrap) phase of this
module, the GUI offers the user the possibility of creating a
new configuration for a new forum or to use an existing one.
The configuration interface is shown in Figure 2. When the
crawler is allowed to start, it asks for Cloudflare tickets and
finally loads the login page. Additionally, the “Keywords” tab
allows the user to specify keywords indicating unwanted con-
tent or relevant keywords, allowing the crawler to respectively
avoid opening threads containing any of these in the title or

in any of its posts, or to open only those containing them in
the title in the case of relevant keywords (Figure 5). The user
can now proceed to label the page, selecting the relevant label
and clicking on the corresponding element.

Upon submission, a new window will appear to confirm
the current selection, showing the identified elements obtained
from THREAT/crawl with the learned information. The user
has the chance to manually remove the wrong labels or to reset
completely the training to start from scratch, and to add them
once again. The user can reiterate the process until the result
is satisfactory. As a last resort, THREAT/crawl may ask the
user to provide an XPath to identify the specified element(s).
Once an XPath is provided, THREAT/crawl renders again
the page to confirm the selection.

2) A2. JavaScript injection module: When a script was
defined during the training for the specific page, it is executed
before interacting with the page. Figure 7 in the appendix
shows the interface to inject the desired JavaScript as discussed
in Section V-C2. The currently displayed code is generated
from the “prefill” button, which allows to identify an element
in the page via XPath and to click on it; the user is then left
to replace “YOUR XPATH HERE” with the correct XPath.

3) A3. Scheduler: The schedule for a crawling activity
is defined at configuration time. Figure 6 in the appendix
provides a view of the interface. The indicated times apply to
the specified timezone defined in the configuration tab. In our
case the crawler should perform its activity during weekdays
from 17:00 to 20:00; during weekends, the crawler should
work from 9:30 to 13:30 with a scheduled pause between
10:30 and 11:00 (this is the schedule used for the benchmark),
and another crawling session from 15:00 to 20:00.

4) A4. Crawling module: During the crawling process, one
of the two interactions with the user is the notification of a
CAPTCHA in the page. During the login on nulled and
altenen the crawler informs the user that there is a Google
reCAPTCHA in the login page and asks to solve it. When the
CAPTCHA is solved, the user confirms by typing “solved” in
the terminal and the crawler proceeds to login. The second in-
teraction available to the user is the manipulation the execution
of THREAT/crawl by typing in the console the commands
“resume” to skip the current break, interruption or delay,
resuming the crawling immediately, “pause” to suspend its
execution or “terminate” to end the current crawling session.

5) A5. Privacy Pass ticket injection module: nulled is
protected by Cloudflare DDoS protection. Therefore, access-
ing it via TOR Browser will cause Cloudflare to show the
CAPTCHA page and deny access due to TOR’s exit-nodes
poor reputation. To solve this issue, at startup the crawler asks
whether the user wants to provide Cloudflare tickets before
execution. To earn tickets, it is sufficient to open a regular
Firefox instance with the Privacy Pass extension installed and
browse the website captcha.website. Solving a challenge
will grant the extension 30 tickets necessary to bypass the
CAPTCHA page (which could be displayed several times
during one session) and consume more than a single ticket
to bypass it. Solving the challenge multiple times allows

to earn more tickets, granting access for a longer session.
These tickets can be exported and provided in the prompt of
THREAT/crawl, as shown in Figure 8.

VI. DISCUSSION AND CONCLUSION

In this paper we presented THREAT/crawl, a general
method to learn and stealthily crawl arbitrary (underground)
forums. We present the foundational challenges, proper of
the problem space, such a solution must address, and design
our method and overall solution around those. We provide a
prototype implementation and test it against live, underground
forums. The results show that THREAT/crawl successfully
managed to learn all the forum structures and to crawl four
out of seven forums proposed for validation. The tool success-
fully learned the structure and content layout of the forums
using different strategies accounting for possible anti-crawler
measures. nulled, xss darknetcity and nulledbb
showcase one of a module allowing the user to provide a man-
ually created identifier when all the identification strategies of
the tool fail. The crawling sessions, configured to last four
hours terminated successfully in four cases. Out of these four,
THREAT/crawl was configured to not download pictures
from two targets, darknetcity and altenen, mitigating
the long loading times during the crawling and reducing
TOR network stress; in addition, we modified the WPM
parameter to shorten the delay between the crawling of two
pages, considering the large amounts of spam in the posts of
darknetcity. darknetcity, nulledbb and deeptor
do not feature any subsections, and the crawler manages this
case naturally. crdclub and nulledbb present a special
case in which clicking on a thread opens its last page; the
tool offers the possibility to handle this case by training the
button opening the first page of the thread when landing
on it. In another two forums, nulled and altenen, we
showcased another feature supporting the extensibility of the
tool, the JavaScript injection module; for the former, we wrote
a script to reach the sections of interest from the front page,
while for the latter we wrote a script to interact with the
page to reveal the hidden content of a post. Furthermore,
during the training of altenen we opted to not to train
the next page button, causing THREAT/crawl to seamlessly
terminate the crawling of the current thread and move to the
next one, to avoid crawling pages containing spam. More-
over, nulledimposed a strict policy for visitors, nullifying
our efforts of bypassing Cloudflare’s CAPTCHAs during the
benchmark. However, this is a problem affecting every user
of the platform that tries to access it via TOR. A possible
solution to this problem would be to offer THREAT/crawl
the possibility of switching to a regular Firefox browser,
using an appropriate proxy for anonymity and benefiting from
a ‘clean’ IP address. deeptor had an apparently correct
training, but during the crawling the tool could not find the
location of threads within the section; this was caused from a
change in the DOM after the thread was opened. However, the
problem could be solved by rejecting the apparently correct
training for the problematic element until the XPath injection

module is triggered, and providing an XPath accounting for
both cases. Finally, nulledbb had problems in rendering
the calculated identifiers during the training due to one or
more wrong identifiers; this could be solved by implementing
a feature that allows to visually verify identifiers one at a time,
narrowing down the retraining to the incorrect identifiers only
and avoiding to run the training several times to guess what are
the problematic labels. On the same platform, we experienced
a limitation of the Selenium framework, which turned to be
incapable of detecting whether a page was successfully loaded
or not, and stalling the execution of THREAT/crawl.

A. THREAT/crawl release

A significant portion of today’s research on cybercriminal
communities relies on leaked data and old datasets, allowing
to perform post-mortem analysis on them. In other cases, re-
searchers develop ad-hoc crawlers and parsers to tap data from
each community of interest, which is a burdensome procedure.
This software is rarely shared among the community, because
its purpose is limited to the scope of the research. The cost
of developing such software discourages research and limits
its scope, whereas the (in)success of extracting data from a
community can make the whole research unfeasible. Risks
are higher when the target is a prominent community, where
the costs (e.g., pecuniary) of losing access are substantial and
obtaining access again may be ethically hard to justify.

Therefore, we propose and release THREAT/crawl, a
prototype crawler that aims to address different problems
related to the crawling of criminal communities, offering
a supervised procedure to learn the structure of a target
community, supporting manual intervention in particular cases,
and enabling dynamic interaction with the page via JavaScript
to circumvent several custom anti-crawler mechanisms. To-
gether with a (potentially more supported) CAPTCHA bypass
mechanism and the modelling of a seemingly-legitimate user,
THREAT/crawl proves that it is possible to crawl across
a number of different underground communities, without the
burden of creating scarcely reusable software for both crawling
and parsing their content while remaining stealth, and giving
the user possibility to tune the tool to reach the desired trade-
off between stealth and throughput.

B. Future work

As the tool is currently a prototype meant to showcase
the overall approach and its viability, from the evaluation we
identify a number of key improvement points to address in the
future, also for possible uptakes from the community.

a) Training procedure: The training of nulledbb was
particularly complicated due to the improper rendering of the
calculated identifiers. The training interface could be improved
to ease the troubleshooting of these problematic training sce-
narios, allowing to highlight one family of identified elements
at a time. Detecting only CAPTCHAs hinders the crawling of
a target platform. A fully-fledged solution would require to
detect and forward CAPTCHAs to an operator in charge of
solving them to resume the crawling of the target platform.

Commercial solutions managing CAPTCHA resolution exist,
and could be used for the same purpose. At its current state,
the crawler does not support the crawling of threads that have
been already visited. This could be solved by training in the
section/subsection THREAT/crawl to recognize the count of
posts within a thread and to keep track of it; if this number
does not correspond to the stored value during the previous
crawling session, the thread should be visited again. This could
be an optional feature working only when this information has
been provided to THREAT/crawl during the training.

b) Crawler robustness: In the case of nulled, albeit
A5 offers a solution preventing CAPTCHAs being displayed
and Privacy Pass being potentially adopted by different DDoS
protection services in the near future, it falls short when
stronger access policies are enabled, preventing access to users
connecting via TOR. To solve that, THREAT/crawl should
offer the possibility to use a regular Firefox instance tunneling
traffic through a proxy different from TOR, benefiting from a
non-blacklisted IP address. Another encountered problem is
connected to the use of Selenium as the browser instrumen-
tation library of choice. Selenium is designed to be a web
application testing framework, and some edge-cases regarding
connectivity issues that may arise are not taken in account in
the current state of the library. Therefore, it is necessary to ex-
tend the library to allow its usage as a browser instrumentation
framework for crawling over unreliable networks.

VII. CONCLUSION

In this paper, we showcased the advantages and limitations
of the current iteration of THREAT/crawl. This prototype
shows the potential to achieve the identified goals for a
reusable and extensible automated crawler for underground
communities, highlighting the strengths of an extensible train-
ing process tackling different anti-crawler measures. We be-
lieve that addressing the recommendations described in Sec-
tion VI-B could make THREAT/crawl a solid solution,
capable of stealthily crawling and extracting content from a
variety of underground forums, supporting research relying
on datasets originating from cybercriminal communities. In
the near future, we plan to deploy an enhanced version
THREAT/crawl in our institution to start a longitudinal data
collection across different criminal communities for further
research in the current and active underground threat scenario.

Publication, Development, and Licensing. The development
of THREAT/crawl was partially supported by a team
of BSc students as part of their final graduation project.
THREAT/crawl is released under GNU Affero General Pub-
lic License v3.0. Source code and documentation are available
at https://gitlab.tue.nl/threat-crawl/THREATcrawl

ACKNOWLEDGMENTS

This work is supported by the ITEA3 programme through
the DEFRAUDIfy project funded by Rijksdienst voor On-
dernemend Nederland, Grant No. ITEA191010, and by the
INTERSCT project, Grant No. NWA.1162.18.301, funded by
Netherlands Organisation for Scientific Research (NWO).

https://gitlab.tue.nl/threat-crawl/THREATcrawl

REFERENCES

[1] X. Bouwman, H. Griffioen, J. Egbers, C. Doerr, B. Klievink, and
M. Van Eeten, “A different cup of {TI}? the added value of commercial
threat intelligence,” in 29th USENIX security symposium (USENIX
security 20), 2020, pp. 433–450.

[2] Europol, “Massive blow to criminal dark web activities
after globally coordinated operation,” 2017. [Online].
Available: https://www.europol.europa.eu/media-press/newsroom/news/
massive-blow-to-criminal-dark-web-activities-after-globally-coordinated-operation

[3] L. Allodi, “Economic factors of vulnerability trade and exploitation,”
in Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, 2017, pp. 1483–1499.

[4] R. Anderson, R. Clayton, R. Böhme, and B. Collier, “Silicon den:
Cybercrime is entrepreneurship,” in Workshop on the Economics of
Information Security, 2021.

[5] S. Pastrana, A. Hutchings, A. Caines, and P. Buttery, “Characterizing
eve: Analysing cybercrime actors in a large underground forum,” in
International symposium on research in attacks, intrusions, and defenses.
Springer, 2018, pp. 207–227.

[6] A. Hutchings and S. Pastrana, “Understanding ewhoring,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 201–214.

[7] M. Campobasso and L. Allodi, “Impersonation-as-a-service: Charac-
terizing the emerging criminal infrastructure for user impersonation
at scale,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1665–1680.

[8] S. Pastrana, D. R. Thomas, A. Hutchings, and R. Clayton, “Crimebb:
Enabling cybercrime research on underground forums at scale,” in
Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1845–
1854.

[9] W. DeSombre, M. Campobasso, L. Allodi, J. Shires, J. Work, R. Morgus,
P. Howell O’Neill, and T. Herr, “Primer on the proliferation of offensive
cyber capabilities,” Atlantic Council, 2021.

[10] M. Campobasso, P. Burda, and L. Allodi, “Caronte: crawling adversarial
resources over non-trusted, high-profile environments,” in 2019 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 2019, pp. 433–442.

[11] K. Turk, S. Pastrana, and B. Collier, “A tight scrape: Methodological
approaches to cybercrime research data collection in adversarial envi-
ronments,” in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2020, pp. 428–437.

[12] D. Décary-Hétu and J. Aldridge, “Sifting through the net: Monitoring of
online offenders by researchers,” European Review of Organised Crime,
vol. 2, no. 2, pp. 122–141, 2015.

[13] A. K. Sood and R. J. Enbody, “Crimeware-as-a-service—a survey of
commoditized crimeware in the underground market,” International
Journal of Critical Infrastructure Protection, vol. 6, no. 1, pp. 28–
38, 2013. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1874548213000036

[14] M. Goncharov, “Russian underground 101,” Trend Micro incorporated
research paper, p. 51, 2012.

[15] H. Fallmann, G. Wondracek, and C. Platzer, “Covertly probing under-
ground economy marketplaces,” in International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. Springer,
2010, pp. 101–110.

[16] Y. Fang, Y. Guo, C. Huang, and L. Liu, “Analyzing and identifying
data breaches in underground forums,” IEEE Access, vol. 7, pp. 48 770–
48 777, 2019.

[17] E. Nunes, A. Diab, A. Gunn, E. Marin, V. Mishra, V. Paliath, J. Robert-
son, J. Shakarian, A. Thart, and P. Shakarian, “Darknet and deepnet
mining for proactive cybersecurity threat intelligence,” in 2016 IEEE
Conference on Intelligence and Security Informatics (ISI). IEEE, 2016,
pp. 7–12.

[18] V. Benjamin, J. S. Valacich, and H. Chen, “Dice-e: A framework for
conducting darknet identification, collection, evaluation with ethics.”
MIS Quarterly, vol. 43, no. 1, 2019.

[19] J. Jiang, X. Song, N. Yu, and C.-Y. Lin, “Focus: learning to crawl
web forums,” IEEE Transactions on knowledge and Data Engineering,
vol. 25, no. 6, pp. 1293–1306, 2012.

[20] N. Christin, “Traveling the silk road: A measurement analysis of a
large anonymous online marketplace,” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 213–224.

[21] J. Martin and N. Christin, “Ethics in cryptomarket research,” Interna-
tional Journal of Drug Policy, vol. 35, pp. 84–91, 2016.

[22] C. Huang, Y. Guo, W. Guo, and Y. Li, “Hackerrank: Identifying key
hackers in underground forums,” International Journal of Distributed
Sensor Networks, vol. 17, no. 5, 2021.

[23] Y. Kawaguchi, A. Yamada, and S. Ozawa, “Ai web-contents analyzer
for monitoring underground marketplace,” in International Conference
on Neural Information Processing. Springer, 2017, pp. 888–896.

[24] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou, “Studying
malicious websites and the underground economy on the chinese web,”
in Managing information risk and the economics of security. Springer,
2009, pp. 225–244.

[25] Scrapy, “A fast and powerful scraping and web crawling framework.”
[Online]. Available: https://scrapy.org/

[26] Z. Laliwala and A. Shaikh, Web Crawling and Data Mining with Apache
Nutch. Packt Publishing, 2013.

[27] G. Mohr, M. Stack, I. Rnitovic, D. Avery, and M. Kimpton, “Introduction
to heritrix,” in 4th International Web Archiving Workshop. Citeseer,
2004, pp. 109–115.

[28] Scrapy, “Avoiding getting banned,” Nov 2022. [Online]. Available:
https://docs.scrapy.org/en/latest/topics/practices.html#bans

[29] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Robula+: An algorithm
for generating robust xpath locators for web testing,” Journal of Soft-
ware: Evolution and Process, vol. 28, no. 3, pp. 177–204, 2016.

[30] G. Acar, M. Juarez, and individual contributors, “tor-browser-selenium
- tor browser automation with selenium,” 2020. [Online]. Available:
https://github.com/webfp/tor-browser-selenium

[31] J. Huggins, P. Gross, J. T. Wang, and individual contributors, “Selenium,
a suite of tools for browser automation.” 2004. [Online]. Available:
https://www.selenium.dev/

[32] T. Project, “The tor project: Privacy and freedom online,” 2006.
[Online]. Available: https://www.torproject.org/

[33] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,
“Privacy pass: Bypassing internet challenges anonymously.” Proc. Priv.
Enhancing Technol., vol. 2018, no. 3, pp. 164–180, 2018.

[34] Cloudflare, “Using privacy pass with cloudflare,” jan 2022, cloudflare
help center. [Online]. Available: https://support.cloudflare.com/hc/en-us/
articles/115001992652-Using-Privacy-Pass-with-Cloudflare

APPENDIX

Fig. 5: Keywords definition in the configuration interface.

Fig. 6: Overview of the scheduler configuration interface.

https://www.europol.europa.eu/media-press/newsroom/news/massive-blow-to-criminal-dark-web-activities-after-globally-coordinated-operation
https://www.europol.europa.eu/media-press/newsroom/news/massive-blow-to-criminal-dark-web-activities-after-globally-coordinated-operation
https://www.sciencedirect.com/science/article/pii/S1874548213000036
https://www.sciencedirect.com/science/article/pii/S1874548213000036
https://scrapy.org/
https://docs.scrapy.org/en/latest/topics/practices.html#bans
https://github.com/webfp/tor-browser-selenium
https://www.selenium.dev/
https://www.torproject.org/
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare

TABLE V: Summary of issues and strategies addressing each identified requirement in THREAT/crawl.

Requirement Issues Strategy

R1. Stealth Crawler traffic easily identifiable compared to
“user” behavior, (absence of) specific infor-
mation in HTTP requests, or by fingerprinting
the device [11], [12].

Use a real browser for the crawling; mimic human behaviour adopting
the strategy used in [8], [10] to interact with buttons and links in the
displayed page, and regulate timing according to the amount of text in
the page [10].

R2.
Configurable

Crawling must be limited in time during the
day and should not show consistent patterns
over time; not all content is relevant to crawl.

Allow user to define a crawling schedule for each day of the week,
as well as when to pause. To limit the onset of patters, a number
of randomly generated pauses are integrated in the schedule, and
random noise added to the start and end time. Specify the “reading-
speed” of the simulated user to calculate the time between accesses
to subsequent resources. Define (white- and black-listed) keywords to
select (or avoid) specific content. See also MR2.

R3. Trainable Flexible identification of relevant HTML el-
ements in a page.

Identify strategies to account for diverse forum structures and provide
different solutions to infer the necessary identifiers, while offering a
guided and simplified procedure to its user.

R4. Extensible Underground communities increasingly fea-
ture modern CMSes, supporting dynamic
content generation and requiring JavaScript,
making the localization of content hard to
predict.

Allow the user to input pre-generated identifiers to find HTML ele-
ments identifiers. In some circumstances, content in a page may be
overshadowed or can be dynamically generated, requiring to interact
first with the page; for this reason, THREAT/crawl provides the
option to perform preliminary operations by executing JavaScript on
the page.

R5. Structured
data collection

Crawled web pages need to be parsed to
extract and structure their content in an un-
derlying database.

Allow user to label specific content to be saved from each page in a
structured way.

MR1.
Parsimonious

Limit use of shared bandwidth in TOR while
keeping crawling functionalities sufficiently
fast.

Limit content to be crawled to focus on what necessary (R2) and
throttling traffic (R1).

MR2. Censoring Avoid the download of unwanted material. Keyword white- and black-list matching (R2).

TABLE VI: Summary of the strategies used to derive identifiers during the training.

Login page Home page Section page Subsection page

Home User Pass Login Home Sec(s) Subsec(s) Home Sec Subsec(s) Threads Next Prev Home Sec Subsec Threads Next Prev
crdclub - S1 S1 S1 S1 S2 S2 S1 S2 S2 - - - S1 - S2 S2 - -
nulled S1 - - S1 S1 S2 S2 S1 S2 S2 S2 S1 S1 S1 S2 S2 INJ S1 S1

xss S1 S1 S1 S1 S1 S2 S2 S1 S2 S2 - - - S1 S2 S2 INJ S1 S1
altenen S1 S1 S1 S1 S1 S2 S2 S1 S2 S2 S2 S1 S1 S1 S2 S2 S2 S1 S1

nulledbb - S1 S1 S1 S1 S2 - S1 S2 - S2 INJ INJ - - - - - -
deeptor S1 S1 S1 S1 S1 - S2 S1 S2 - INJ S1 S1 - - - - - -

darknetcity S1 S1 S1 S1 S1 S2 S2 S1 S2 - INJ S1 S1 - - - - - -

Thread page

Home Next Prev First page Thread title Thread sec Post author (PA) PA # posts PA popul PA registration date Post date Post content
crdclub S1 S1 S1 S1 S2 S2 S2 S2 S2 S2 S2 S2
nulled S1 S1 S1 - S2 S2 S2 S2 S2 S2 S2 S2

xss S1 S1 S1 - S2 S2 S2 S2 INJ S2 S2 S2
altenen S1 - - - S2 S2 S2 S2 S2 S2 S2 S2

nulledbb S1 S1 S1 S1 S2 S2 S2 S2 S2 - INJ INJ
deeptor S1 S1 S1 - S2 S2 S2 S2 S2 S2 S2 S2

darknetcity S1 - - - S2 S2 S2 INJ S2 INJ S2 S2

It is possible to see that nor S3 or S4 ever appear to be used. However, S3 exists because of crdclub; at the beginning of 2022, we could not
identify navigational items consistently with the first two strategies, and we developed this strategy to solve this issue. S4 instead has been tested in
a synthetic environment, but it did not yield any useful result in the real world as of yet.

Fig. 7: JavaScript injection module prefilled with a “click-on-
element” script. Fig. 8: Screenshot of the tickets available in the source

browser.

	Introduction
	Problem space and solution requirements
	Adversarial environment for crawling
	Diverse underground communities
	Ethical considerations

	Related work
	Overall Method and Solution Design
	Solution architecture

	THREAT/crawl evaluation against live, active underground forums
	Selected underground forums
	Overall performance
	Technical rundown
	A1 Training
	A2 JavaScript injection module
	A3 Scheduler
	A4 Crawler
	A5 Privacy Pass ticket injection module

	User interface
	A1. Training module
	A2. JavaScript injection module
	A3. Scheduler
	A4. Crawling module
	A5. Privacy Pass ticket injection module

	Discussion and conclusion
	THREAT/crawl release
	Future work

	Conclusion
	References
	Appendix

